The secret to successful analytics lies in data engineering, as much as algorithm selection. Sure, there are exceptions to this. No doubt there are times when only one specific algorithm will work for a particular set of data. However, we believe there is no substitute for sound data engineering.
Data engineering is the process of feature creation. Features in the data are what an analytics algorithm will use to making predictions or estimation. Depending on how features are being created by a data engineering process will ultimately determine how human-readable the final models will be. It is easy to go from data engineering to data over-engineering.
An example of the pitfalls of data over-engineering is in the use of Support Vector Machines. The SVM classification algorithm is very powerful, it achieves this by a) only focusing on the handful of data points which defy a simple black-and-white separation of the data and b) performing data engineering that exposes powerful data features but which might not make sense to the ordinary person. For some use cases this is acceptable, but SVM classifications could easily enter the territory of "snake oil". SVM are an expert-user tool and the end user has to trust the person performing the analytics, because the outputs become too complex to explain in simple human terms.
Human readable models are a current focus of KL. We are in the middle of building out our data engineering functionality to allow users to create human-readable features from many different data-structure types. These new features will improve the power of KL's analytics algorithms without rendering them exclusively machine-readable.